\qquad
Chapter 2 Project

CSI: AAT: TRMHS

Stolen TI-84s! While investigating a crime scene at a local high school, detectives noticed a single pair of footprints approaching and departing the scene. Also, on a window sill, they recovered a handprint. They wanted to know if they could infer the height of the culprit based on these data.

I. Collect Data

Using our class as specimen, complete the table below:

Name	$\begin{gathered} \text { Sting } \\ \text { Leng } \end{gathered}$	$\begin{aligned} & \text { Actual Shoe } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Hand Length } \\ & \text { (inches) } \end{aligned}$	${ }_{\text {Height (lnenes) }}$

AAT
Chap 2 Project

II. Create Models

Stride vs Height: making stride your independent variable, complete the following table.

Which model is a better fit and why?
Shoe Size vs Height: making shoe size your independent variable, complete the following table.

Linear Model:	Quadratic Model:
$r \approx \quad, r^{2} \approx$	$R^{2} \approx$

Hand length vs Height: making stride your independent variable, complete the following table.

Linear Model:	
$r \approx \quad, r^{2} \approx$	$r \approx \quad$ Model:

III. Data Analysis

1. Based on the model, is it fair to infer a person's height from their stride? Explain.
2. Based on the model, is it fair to infer a person's height from their shoe size? Explain.
3. Based on the model, is it fair to infer a person's height from their hand size? Explain.

IV. Case Analysis

1. Using the linear/exponential model (circle one) you chose on the previous pages, calculate the approximate heights based on the following stride lengths:
a. 30 in \qquad
b. 18.1 in \qquad
c. 19.9 in \qquad
2. Using the linear/quadratic model (circle one) you chose on the previous pages, calculate the approximate heights based on the following shoe sizes:
a. 6.5 in \qquad
b. 7.75 in \qquad
c. 11.5 in \qquad
3. Using the linear/ \qquad model (circle one) you chose on the previous pages, calculate the approximate heights based on the following hand lengths:
a. 5.5 in \qquad
b. 7.75 in \qquad
c. 6.3 in \qquad
4. The detectives measured the shoe size at the crime scene to be 12 in . The stride length to the scene was about 34 inches but away from the scene was 46 inches. The hand length was 7.5 inches. Using these data, give a range of potential heights. Then explain the difference in the stride length.
5. Are there any other inferences about the suspect one can make from the data? Explain.
